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Kadeploy3:
Efficient and Scalable Operating System Provisioning for

HPC Clusters
Résumé : Operating system provisioning is a common and critical task in cluster computing
environments. The required low-level operations involved in provisioning can drastically decrease
the performance of a given solution, and maintaining a reasonable provisioning time on clusters
of 1000+ nodes is a significant challenge. We present Kadeploy3, a tool built to efficiently
and reliably deploy a large number of cluster nodes. Since it is a keystone of the Grid’5000
experimental testbed, it has been designed not only to help system administrators install and
manage clusters but also to provide testbed users with a flexible way to deploy their own operating
systems on nodes for their own experimentation needs, on a very frequent basis. In this paper
we detail the design principles of Kadeploy3 and its main features, and evaluate its capabilities
in several contexts. We also share the lessons we have learned during the design and deployment
of Kadeploy3 in the hope that this will help system administrators and developers of similar
solutions.

Mots-clés : HPC, cluster provisionning
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1 Introduction

Traditional users of computing resources do not often care about the way in which the operating
system has been installed on the hardware as long as their applications can be compiled and
executed.

However the task of installing an operating system can be very tedious on large scale clusters.
Since it is not realistic to install the nodes independently, disk cloning or imaging [1, 9, 12, 14] is
a common approach. In this case the administrator must keep updated only one node (sometime
called golden node) that can be replicated to other nodes. Usually a small post-installation step
has to be performed to customize certain node-specific parameters (e.g., identity details).

The work presented in this paper has emerged from quite specific requirements mandated
by the Grid’5000 experimental testbed [6, 15]. The goal of Grid’5000 is to provide the users
with a fully customizable testbed in order to perform advanced experiments in all areas of
computer science related to parallel, large-scale or distributed computing and networking. Thus,
the testbed required a tool to allow users to deploy their own operating system (whatever flavor).
In many cases, this capability is essential since users might need to gain root on the nodes in order
to install specific packages or to tune kernel parameters, or simply to install a non-standard OS.
The computing resources of Grid’5000 are distributed over several sites (10 in 2012), mostly in
France. Each site can support several hundred nodes. The major constraints of OS provisioning
on the Grid’5000 testbed include:

• the operating system on any grid node can be modified by any user at any time, potentially
several times a day. To avoid any conflicts between users, the tool must interact with the
batch scheduler to specify which user has the right to deploy a specified set of nodes during
a time slice.

• the reconfiguration time of an entire cluster (100+ nodes) must be small enough (on the
order of ten minutes) and the reconfiguration process reliable enough to let users quickly
set up their experiments.

• several clusters of a given site (with different hardware characteristics) and even several
grid sites can have to be reconfigured in one shot, in the case of a grid experiment for
instance.

• even though Linux is the most widely used operating system on Grid’5000, non-Linux/*nix
based operating systems must also be supported.

• some users do not need to deploy a specific environment; a standard production environ-
ment can be used instead. Whenever possible, the standard environment should be main-
tained between experiments so as to avoid total reconfiguration and longer setup times.
This requires several technical restrictions, e.g., the new operating system must be installed
on a separate partition and the master boot record must not be modified.

• since users can reconfigure the nodes as they see fit, nodes may be in almost any state
after experiment completion. Thus no assumption must be made about the state of a node
before a reconfiguration. Grid’5000 mechanisms allow to check if nodes have been altered
after experiment completion in order to redeploy the standard environment.

• most users are accustomed to scripting their experiments, so the deployment tool must not
only offer a command line interface, but also an API.
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Figure 1: Kadeploy deployment process, composed of three macro-steps

Kadeploy3 has been designed to be used beyond the Grid’5000 testbed, so it is also possible to
use it in a more common way (e.g., as an administration tool such as xCAT [14] or SystemImager
[12]). Compared to its competitors, Kadeploy3 has better scalability properties, a property that
is paramount since we would like to target petascale and future exascale clusters. The solution
is relying on standard mechanisms (such as network boot), tunable (to be compliant with any
technologies) and hardware independent. As a consequence Kadeploy3 is potentially usable with
any kind of HPC cluster.

In this paper, we present an experiment in which we deploy 4,000 nodes in a single admin-
istrative cycle. Kadeploy3 is flexible enough to load or release dynamically certain features in
order to fit a wide range of existing infrastructures and requirements.

The paper is organized as follows. Section 2 gives an overview of Kadeploy3 concerning the
deployment process and its ecosystem. Section 3 describes the designs principles, in particular
those related to the software architecture and to the scalability. Section 4 shows qualitative
and quantitative evaluation elements that demonstrate the feasibility and the efficiency of our
solution even in large scale environments. Section 5 details the lessons we have learned through
the design, the development and the use of the tool. Section 6 compares Kadeploy3 to the state
of the art. Finally, section 7 concludes the papers and presents the future directions we plan to
investigate.

2 Overview

In this section we give an overview of Kadeploy3. First, we detail the steps that comprise the
deployment process and how this process can be reliable. Then, we explain how Kadeploy3
interacts with the infrastructure ecosystem and in particular, the issue of node booting. Finally
we present the suite of tools associated to Kadeploy3.

2.1 Deployment Process

Kadeploy3 belongs to the family of the disk imaging and cloning tools. Thus it takes as input
an archive containing the operating system to deploy, called an environment, and copies it on
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the target nodes. As a consequence, Kadeploy3 does not install an operating system following a
classical installation procedure and the user has to provide an archive of the environment (as a
tarball, for Linux environments).

As shown in figure 1, a typical deployment with Kadeploy3 is composed of three major steps,
called macro steps.

1. Minimal environment setup: the nodes reboot into a trusted minimal environment that
contains all the tools required for the deployment (partitioning tools, archive management,
...) and the required partitioning is performed.

2. Environment installation: the environment is broadcast to all the nodes and extracted on
the disks. Some post-installations operations can also be performed.

3. Reboot on the deployed environment.

Each macro step can be executed via several different mechanisms to optimize the deployment
process depending upon required parameters and the specific infrastructure. For instance, the
Reboot on the deployed environment step can perform a traditional reboot or it might instead
rely on a call to kexec 1 for a shorter reboot.

Reconfiguring a set of nodes involves several low-level operations that can lead to failures for
various reasons, e.g., temporary loss of network connectivity, reboot longer than planned, etc.
Kadeploy3 is designed to identify these failures as quickly as possible and improve deployment
reliability by providing a macro step replay mechanism on the nodes of interest. To illustrate
that, let’s consider the last deployment macro step that aims at rebooting on the deployed
environment. Kadeploy3 implements, among others, the following strategies:

1. directly load the kernel inside the deployed environment thanks to kexec;

2. perform a hard reboot using an out-of-band management hardware without checking the
state of node.

Thus it is possible to describe strategies such as: try to launch the first strategy; then if some
nodes fail, try to launch the second strategy two time if required.

2.2 Interaction with the Ecosystem
Kadeploy3 does not directly take control of the nodes since it would require some specific and
uncommon hardware support. Instead, it uses common network boot capabilities based on the
PXE protocol [11]. This works as follows:

1. at boot time, the network device of the node makes a DHCP query;

2. a DHCP server responds to the node with the address of the server containing the PXE
profile (i.e., the information describing how the node is supposed to boot);

3. the node fetches the PXE profile from the server and performs the required operations.
Depending upon the profile, some operations may require retrieval of more files, such as a
kernel.

Using such a mechanism, combined to the capability to dynamically update the PXE profiles
of the nodes and with the capability to reboot the nodes in a reliable way (thanks to BMC, RSA
or PDU capabilities for instance), it is possible to take the control of the nodes and to specify
what they are booting.

1http://www.ibm.com/developerworks/linux/library/l-kexec/index.html
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Figure 2: Interactions between Kadeploy and its ecosystem

Figure 2 shows the interaction between Kadeploy3, the infrastructure services and the cluster
nodes.

2.3 The Kadeploy3 software suite

Kadeploy3 is packaged with a set of complementary tools that are briefly described in this section.

Management of images
the Kaenv tool enables users and administrators to manage a catalog of deployment images,
either shared between users or private to one user.

Rights management
Karights is used to define deployment permissions for users. It also provides the glue to
integrate Kadeploy with a batch scheduler, making it possible to allow a given user to
deploy a set of nodes for the duration of his job on the cluster.

Statistics collection
deployment statistics (durations, success/failures) are collected continuously, and available
through the Kastat tool. This data can be leveraged by system administrators to identify
nodes with hardware issues.

Frontends to low-level tools
Tools such as Kareboot, Kaconsole and Kapower act as frontends to lower-level tools (such
as those based on IPMI [7] and integrate with the Kadeploy rights management system, to
allow users to reboot, power-off/on, and access the remote serial console of nodes.

Inria
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3 Design Principles

3.1 Software Architecture
We detail here several aspects of the Kadeploy3 architecture and the reasons behind our choices.

3.1.1 Client/Server Architecture

Kadeploy3 implements a client/server architecture. The majority of the deployment code is
located on a server that requires write access to the PXE profile repository. All tools presented
in section 2.3 can be used either using a lightweight client or using an RPC API. A typical
installation would use one Kadeploy server for a set of clusters that are reachable on the same
local network. In our terminology, a cluster is a set of nodes with identical characteristics (for
performance concerns) located in the same area (typically the same room where the latency
between the nodes is very low). When using one Kadeploy server to manage several clusters
(what we call a site), the latency between the server and the nodes is supposed to be quite low
also since several infrastructure services are shared (e.g., TFTP server for PXE boot, database,
etc). In this case the clusters are supposed to be inside the same building. This design has
several benefits:

• Support for concurrent deployments is one objective of Kadeploy3. Indeed, in the Grid’5000
context, several users can easily deploy nodes at the same time. Having a global view of
all deployments allows certain optimizations such as simplified database access (required
for rights management, environment management and some logging operations), support
for an environment cache on the server, and support for mastering some concurrent opera-
tions that would hurt the infrastructure in case of massive execution (e.g., reboots, power
operations, etc);

• It is possible, from a single client, to control deployments from multiple servers (typi-
cally located at different grid sites) with a single client. This feature is currently used on
the Grid’5000 testbed to perform concurrent deployments on several grid sites in a single
administrative cycle;

• Since the PXE repository requires root access, the server needs to run Kadeploy tasks as
root, but the clients can run as a normal user. This limits potential security issues.

3.1.2 Deployment Process Management

As stated in section 2.1, several mechanisms may be available to carry out each macro step.
Kadeploy3 implements a minimal workflow engine that manages the lifecycle of the deployment
process.

First, it is possible to specify a predefined mechanism for eachmacro step in the configuration.
Robustness is also supported by telling the system to perform several rounds of a given macro
step in the case of failures in a subset of nodes. Furthermore, macro step mechanisms may be
combined in different permutations across multiple attempts. This may increase reliability by,
e.g., using an optimized but unreliable mechanism in a first round and then using safer but less
optimal mechanisms in subsequent rounds to ensure eventual success. The last macro-step of
rebooting nodes in a deployed environment illustrates this approach.

In order to accommodate special requirements, complex deployment processes can be altered
or completely redefined by users on the command line. Furthermore, the deployment process
can be enhanced at any time. This enables users to act like administrators and perform specific
operations that are not necessary for a majority of users.
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Finally, the Environment installation macro step has the capability to execute post-configuration
operations once the environment is copied to node disks. This allows customization of the en-
vironment and is often required to assign some specific configuration parameters. Kadeploy3
defines two levels of post-configuration. The first is specified by administrators and is applied
in every deployment and the second can be defined by users to tailor their own deployment.
More specifically, the deployment process can be augmented at any time by allowing users to
add hooks in the workflow engine.

3.1.3 Booting into the deployed environment

Once the environment is copied on the nodes and the post-installation operations are performed,
the environment has to be launched. This is done by updating the PXE profile of the nodes
followed by a reboot. Since the Grid’5000 context adds the constraint of keeping the master
boot record of the nodes unmodified, it is not possible to leverage on a classical boot method.

Kadeploy3 offers two methods to launch an environment, both based on network boot.
The first method, called pure PXE boot, consists in fetching the kernel files (vmlinuz, initrd,

and possibly an hypervisor) over the network in order to directly boot a node (the environment
files are written on the disk). This methods only works with environments based on Linux. Be-
cause the deployed environment can vary, the kernel files must be extracted from the environment
on the Kadeploy server before being placed in the PXE repository for a future fetch. To help
the extraction, the environment creator must specify in the environment description, the paths
to the necessary kernel files. Although a cache mechanism can be used to reduce the burden of
repetitive extraction when the same environment is deployed, PXE boot remains heavy-handed.
Furthermore, the kernel files (several MBs) have to be fetched, over TFTP or HTTP (in the best
case), by all deployed nodes, which contributes to network congestion. These limitations make
this method suitable only for uncommon situations, e.g., when the hardware is not compliant
with the advanced Syslinux [13] features detailed in the rest of this section.

The second method, called chainload boot, uses the Syslinux chain.c32 comboot to boot a
partition directly on a node. In this case, the PXE profile contains a reference to chain.c32 and
the number of the partition from which to chainload. At boot time, after the PXE profile fetch,
the node fetches chain.c32 and boots directly off the specified partition. This method assumes
that a bootloader is installed in the given partition. Here, we have two situations:

• the deployed environment is based on Linux. According to the paths specified in the
environment description, Kadeploy3 generates a Grub2 configuration and installs it on the
target partition;

• the deployed environment is not based on Linux. In this case, the environment is contained
within a raw partition image that already embeds a bootloader. The image is written
directly to the target partition on the node.

3.1.4 Reliability of Reboot and Power Operations

Since reboot and power operations are essential to control of cluster nodes, and ultimately the
entire deployment process itself, they must behave correctly and reliably. Several methods can
be used to reboot a nodes:

1. soft reboot : direct execution of the reboot command;

2. hard reboot : via the reboot capability of out-of-band management hardware with protocols
such as IPMI. Various kinds of reboot can be executed: reset, power cycle, etc;

Inria
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3. very hard reboot : use the power management capability of the power distribution unit
(PDU).

Obviously it is better to use a method that leverages available hardware parts. Performing a
reboot is the best solution with regards to speed and cleanliness. But it may not be an option
if the target node is unreachable via in-band methods such as ssh (e.g., the node is already
down, the OS has crashed, an unfriendly operating system is installed, etc). In this scenario, we
would use IPMI-like features if available. Also, it might be better for speed to perform a reset
rather than a power cycle since it bypasses the power on self test, but sometimes this is not
sufficient. Finally, if onboard management hardware is unreachable, we may be required to use
the capabilities of a remotely manageable PDU.

Kadeploy3 provides administrators with a way to specify several levels of commands in order
to perform escalation if required. This allows them to perform highly reliable deployments if
the clusters have the appropriate hardware. Advanced scripts that deal with multiple reboot
methods can also be used to improve flexibility and reliability. Unfortunately, depending on the
methods chosen, reboot escalation comes at a cost. Thus a balance must be struck between
desired reliability and the time to deployment. Typically escalation operates by first performing
a soft reboot. In case of failure on some nodes, a hard reboot is performed and a very hard reboot
if necessary.

Implementing a generic command escalation feature can be a bit difficult. Actually, some
commands might involve several nodes, e.g. those attached to the same PDU. In this case,
performing a PDU power-off can shutdown several nodes. Kadeploy3 allows one to specify
groups of nodes in relation to a given command level. These groups can be used for instance to
describe the nodes plugged into the same PDU. When a deployment involves some nodes that
require such an operation, it is only performed on the nodes that do not belong to any group or
on the nodes whose entire group is involved in the deployment.

3.1.5 Configuration

A Kadeploy server is supposed to manage several clusters in the same LAN. Because different
clusters have different hardware specifications (e.g. NICs, hard-drives, out-of-band management
hardware, etc), they have to be managed independently from the deployment point of view.

Configuring Kadeploy3 on the server side consists in filling four kinds of YAML files:

1. a common configuration file defines general parameters of a Kadeploy server (e.g., the
access to the database for rights and environments management, the windows sizes for the
reboot commands, etc).

2. a global file defines the different clusters managed by a server as well as the nodes (host-
names and IPs) included in each cluster.

3. as much specific configuration files as the number of defined clusters. Each cluster configu-
ration file defines the specific configuration elements peculiar to a cluster (e.g., the minimal
environment and its parameters, the reboot/power commands, the reboot timeouts, or the
definition of the deployment workflow composed of the different macro steps).

4. for specific requirements, it is possible to define specific reboot or power commands for
some nodes. This specific configuration overloads the commands defined into the clus-
ter configuration files and avoid the creation of unnecessary Kadeploy clusters for some
exceptions.
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On the client side, it is only necessary to specify the location of the server. If multiple
servers are defined into the client configuration file, Kadeploy3 also offers a facility to perform
deployment on multiple servers in a single administrative cycle.

3.2 Key Features for Scalability

3.2.1 Parallel commands

The deployment workflow contains several operations that reduce to executing a command on a
large set of nodes. The exit status of the command returns to the deployment process the subset
of nodes for which the command was executed correctly.

Thanks to SSH, one can execute commands remotely and retrieve their outputs (stdout,
stderr, exit status, etc). Launching SSH commands on a large number of nodes in sequence does
not scale at all. Furthermore, launching all commands simultaneously can impose an extreme
load on the client and saturate all of its file descriptors.

Several tools have been built to overcome these limitations. For instance, Pdsh [10] and
ClusterShell [2] are designed to execute SSH commands on many nodes in parallel. Both tools
use windowed execution to limit the number of concurrent SSH commands and both also allow
retrieval of command outputs on each node.

We choose to leverage TakTuk [16] as our mechanism for parallel command execution and
reporting. TakTuk is based upon a model of hierarchical connection. This allows it to distribute
the execution load on all the nodes in a tree and to perform commands with low latency. Us-
ing such a hierarchical mechanism would normally require the tool to be installed on all nodes.
Fortunately, TakTuk includes a convenient auto-propagation feature that assures the tool’s exis-
tence on all necessary nodes. The tool also uses an adaptive work-stealing algorithm to improve
performance, even on heterogeneous infrastructures.

3.2.2 File broadcast

The broadcast of the system image to all nodes is a critical part of the deployment. In cluster
environments where the most important network for applications is using Infiniband or Myrinet,
the Ethernet network is often composed of a hierarchy of switches (e.g.; one switch per rack) that
is hard to leverage for a high-performance broadcast. File distribution to a large number of nodes
via any sequential push or pull method is not scalable. Kadeploy3 provides system administrators
with three scalable file distribution approaches during the Environment installation macro step
to minimize deployment time.

With tree-based broadcast, a file is sent from the server to a subset of nodes, which in turn
send the file to other subsets until all the nodes have received. The size of the subsets, called
tree arity, can be specified in the configuration. A large arity can reduce the latency to reach all
nodes but transfer times might increase because global bandwidth is equal to the bandwidth of
a network link divided by the tree arity. The opposite effect occurs when the arity is small. In
general, this broadcast method does not maximize bandwidth and should be used primarily for
the distribution of small files. This method is also inefficient when used in hierarchical networks.
We implement tree-based broadcast using TakTuk.

Chain-based broadcast facilitates the transfer of files with high bandwidth. In practice, this
broadcast method is a special case of tree-based broadcast with an arity of 1. A classical chain-
based broadcast suffers from the establishment time of the chain in large scale clusters. Indeed,
since each node must connect to the next node in the chain (usually via SSH), a sequential initial-
ization would drastically increase the entire broadcast period. Thus we perform the initialization
of the chain with a tree-based parallel command. This kind of broadcast is near-optimal in a
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images
server

Figure 3: Topology-aware chained broadcast. Data is pipelined between all nodes. When cor-
rectly ordered, this ensures that inter-switches links are only used once in both directions.

hierarchical network if the chain is well ordered since, as shown in Figure 3, all the full-duplex
network links can be saturated in both directions, and the performance bottleneck becomes the
backplane bandwidth of the network switches. For this method, we implement chain initialization
using TakTuk and perform transfers using other custom mechanisms.

BitTorrent-based broadcast allows us to send files at large scale without making any assump-
tions about the quality of the network. Furthermore, BitTorrent is able to efficiently handle
churn, an important property in large scale systems like petascale and future exascale clusters.
Currently, our experiments show that there are two scenarios in which the performance of this
broadcast method is inferior to the other methods. The first pathological case is one in which
we are broadcasting on a small-scale cluster with a high-speed network, and the second is one in
which we are broadcasting small files. In both cases, BitTorrent exhibits high latency and the
overhead of the protocol dominates the time to broadcast. Also, as shown in Figure 4, the large
number of established connections between nodes induced by the protocol can lead to bottlenecks
(in red) depending on the network topology.

3.2.3 Windowed operations

Our experience in the development of a cluster deployment tool shows that several low-level
operations must be performed carefully. For instance, it can be disastrous to reboot a huge
number of nodes at the same time in the same technical room since it can generate electric
hazard. It can also flood the network with DHCP requests and accidentally lead to multiple
boot failures.

Kadeploy3 addresses this problem by supporting the definition of windows for multiple oper-
ations like reboots, power operations or nodes check (this leads to scan some ports).

Let’s take the reboot example to illustrate that. According to the infrastructure capabilities
(e.g., network, service nodes, etc) the administrator of a cluster estimates that no more than 100
nodes should be rebooted at once, and a grace period of 10 seconds should be observed after
having rebooted 100 nodes to reboot more nodes. Imagine that you have 400 nodes to reboot.
In this configuration, Kadeploy3 reboots 100 nodes, waits 10 seconds, reboots 100 nodes, and so
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images
server

Figure 4: Bittorrent broadcast. The random selection of peers leads to saturation of the inter-
switches links.

on until all the nodes have been rebooted.
To be effective in a context where concurrent deployments can occur, windows are applied

globally on a Kadeploy3 server.

4 Evaluation
In this section, we describe and evaluate Kadeploy3 along several axes: its source code, its current
usage, some benchmarks on physical infrastructures, and scalability benchmarks on virtualized
infrastructures.

4.1 Software
Kadeploy3 is developed in Ruby and has about 10,000 SLOC. Source code is available under a
free license, as well as Debian and Red Hat packages. As other tool developers have discovered
(e.g. Puppet, Chef, etc), Ruby is well-suited to the objectives of this type of project thanks to
its high expressiveness and its meta-programming features. Furthermore, the core functionality
of Kadeploy3 has no special performance requirements except for parallel command execution
and file broadcast, which are easily delegated to other tools. Thus we favor the simplicity of
development and a high maintenance potential.

4.2 Qualitative Elements
Kadeploy3 has been used intensively on the Grid’5000 testbed since the end of 2009. In that
time, approximately 620 different users have performed 117,000 deployments. On average each
deployment has involved 10.3 nodes. The largest deployment involved 496 nodes (in multi-
site mode). To our knowledge, the deployed operating systems are mostly based on Linux (all
flavors) with a sprinkling of FreeBSD. Although the Grid’5000 use case does not exercise all the
goals targeted by Kadeploy3 (e.g., scalability), it shows the tool’s adequacy with regard to most
characteristics, such as reliability.
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min big
Average time for the 1st macro step 229 255
Average time for the 2nd macro step 56 143
Average time for the 3rd macro step 240 230
Average file broadcast time 31 126
Average deployment time 564 675

Figure 5: Deployment times (seconds)

Kadeploy3 is also used in more straightforward contexts, for administration tasks on produc-
tion clusters in several french research institutes at least. In this case, several features are not
used but scalability and reliability contributes to ease some administration tasks and to minimize
the downtime.

4.3 Validation in Real Infrastructure

4.3.1 Deployment of a Regular Cluster

In this section, we provide the reader with an idea of the time required to deploy regular clusters.
We perform a set of deployments on 130 nodes of the graphene cluster from the Nancy Grid’5000
site. We have launched 5 deployments with a 137 MB environment (called min deployments)
and 5 deployments with a 1429 MB environment (called big deployments).

In those deployments, all the nodes were deployed correctly. Actually some temporary failures
occurs (between 0 to 4 nodes each time), but the robustness mechanisms of Kadeploy3 where
used to ensure the full deployment success. In particular, we add a possible retry on the first
macro step.

Figure 5 details some measures made during the deployments. We can see that deploying
130 nodes in one shot takes between 9 to 12 minutes, depending on the environment size. The
deployment time is mainly spent in two steps: the wait of rebooted nodes (in the 1st and in the
3rd macro step and the broadcast file (in the 2nd macro step). The 1st and the 3rd macro steps
are of the same kind for min and big deployments, the difference is due to the small sampling.
Indeed rebooting 130 nodes can take a variable time according to several uncontrolled parameters
in the infrastructure.

To ensure reliability of the deployments we chose to use a non-aggressive configuration where
large timeouts have been set in order to give slow nodes a chance to appear after a reboot and
also to enable retries. Faster deployment times would have been reached with a more aggressive
configuration, at the price of a few node loss. To be rigorous, we have to precise that the results
shown in figure 5, excepted for the average deployment time, do not take into account the time
spent for nodes that had needed a second try. Actually, the time spent in the retry is partially
covered by the main deployment because rebooting just a few nodes is faster than rebooting a
large set and other operations like file broadcast are also faster on a small node set. That is
why adding the average time spent in the 3 macro steps give a smaller value than the average
deployment time.

4.4 Scalability Validation in Virtualized Infrastructure

Validating scalability on large physical infrastructures can become complex because it requires
privileged rights on many components (e.g., access to management cards, modification of PXE
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Figure 6: Grid’5000 network topology

profiles, etc). Thus we chose to build our own large-scale virtual testbed on Grid’5000, leveraging
important features such as link-layer isolation, and Kadeploy3 of course.

Figure 6 shows the network topology of the Grid’5000 platform. Our testbed comprised four
network-isolated sites (red nodes and associated links). We had access to 635 nodes upon which
we launched a variable number of KVM virtual machines, depending on the node’s capabilities. In
total, 3,999 virtual machines were launched and participated in a single virtual network. Building
the testbed was tricky for several reasons like the high latency between two sites that affects the
infrastructure services. Those reasons are more deeply explained in section 5.3. Thanks to the
versatility of the Grid’5000 platform, we were able to construct the testbed without any privileged
user rights and without suspending access to the platform by other legitimate users.

Once the testbed was launched, we were able to perform deployments within a single cluster
of 3,999 nodes. During the largest run, a 430 MB environment was installed on 3,838 virtual
machines in less than an hour. 161 virtual nodes were lost due to network or KVM issues. A
significant amount of time was also wasted because of the high latency between sites (10-20 ms),
which affected some infrastructure services like DHCP and the PXE protocol.

Here are few statistics of the time spent in the time-greediest steps: the first reboot took 11
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minutes, the broadcast of the image archive took 15 minutes, the second reboot took 7 minutes.
We should also highlight the fact that this experiment was designed a non-friendly way for
Kadeploy. Indeed, Kadeploy is designed as a cluster oriented tool and in this experiment, we
described our resources as resources of the same cluster while in reality the physical machines
were distributed over four sites separated by hundreds of kilometers. This was unfavorable to
the parallel commands execution mechanism that works effectively with small latency differences
between the nodes involved in a deployment.

This experiment demonstrates the effectiveness of the Kadeploy3 design in terms of scalability
and reliability. In particular, hierarchical parallel commands and chain-based broadcast are well-
suited to deployments at this scale. With regard to reliability, roughly 96% of the nodes were
deployed successfully. Deployment to other nodes failed due to infrastructure issues but a large
number of those (e.g., the ones not affected by KVM problems) could have been recovered using
a fallback approach, at the cost of a longer deployment time.

We are confident that Kadeploy3 will scale to larger infrastructures and will be a good choice
for node reconfiguration on a variety of current and future clusters.

5 Lessons Learned
In this section we highlight three technical points that gave us a bit of trouble in the design and
testing of Kadeploy3. The goal is to allow other administrators to save time with the lessons we
have learned.

5.1 Dealing with Unreliable Reboot Mechanisms
Since our node control mechanism relies heavily on remote reboot, it is essential to ensure that
it is performed correctly. Unfortunately, we learned that some of these mechanisms are not
reliable. Much of the problem can be attributed to varying and sometimes incorrect vendor
implementations of IPMI and other protocols. This leads to situations in which the management
card is not able to reboot a node that is in an unexpected state or otherwise unreachable.
Furthermore, IPMI is sometimes implemented on the same Ethernet port that the node uses for
its own traffic. Traffic competition can lead to unresponsive management cards.

In section 3.1.4, we presented the escalation command mechanism to increase the reliability
of the reboot and power control operations. This mechanism depends upon the return status of
the executed commands to decide if escalation is required on some nodes. If the return status
of the executed commands is not correctly reported, it can lead to unreliable reboots. We found
that instead of using raw IPMI commands (or their equivalent for other protocols) we could
improve reliability by wrapping the commands in ad-hoc scripts that test several preconditions
and postconditions.

5.2 First Steps of the Boot
Still related to the node control mechanism, we address the first steps of the boot. As stated
in section 2.2, just after the DHCP step, nodes must retrieve their PXE profile and possibly
some associated files. To achieve this, a typical DHCP configuration would instruct the nodes
to retrieve pxelinux.0 (from the Syslinux project [13]). Then the nodes are able to continue
retrieving other necessary files. All transfers are performed over TFTP, which is not reliable and
not scalable, and which can lead to boot issues.

We found that one way in which to increase reliability and speed is to use gpxelinux.0 (also
from the Syslinux project) instead of pxelinux.0. Even though the retrieval of gpxelinux.0
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still has to be done over TFTP, other retrievals can be made over higher level protocols such
as HTTP. This greatly improves scalability and reliability since, e.g., HTTP servers can deal
with high numbers of static requests, as opposed to the horrible performance exhibited by TFTP
servers under high load.

We also found that PXE implementations in many BIOSes are often poor. When possible,
we highly recommend that network card firmware be updated to use something such as iPXE [8].
This is an open-source boot firmware that enhances a classical PXE implementation with features
such as booting directly from an HTTP server, from iSCSI, or from an Infiniband network. This
approach completely bypasses retrievals via TFTP and highly increases the speed and reliability
of the boot stage.

5.3 Scalability Testing
Building scalable tools always brings the question of the scalability evaluation. Tools like Kade-
ploy3 require a complex infrastructure to be tested and cannot use methods like simulation. As
said in section 4.4, we have built a tool that allows the deployment of a large-scale infrastructure
thanks to virtualization and to advanced features of Grid’5000. We would like to underline some
issues we encountered.

The first problem when dealing with a large number of nodes was related to the poor reliability
and scalability properties of the TFTP protocol. From dozen of simultaneous requests, TFTP
server was quickly overloaded, resulting in a denial-of-service (DoS) that leads to multiple boot
failures. To solve this problem, we have configured virtual machines with an iPXE compliant
NIC in order to be able to use HTTP protocol instead of TFTP for PXE profiles and kernel files
fetching. Using HTTP allows to boot hundreds of nodes at the same time. Furthermore, thanks
to some HTTP server tunings, we were able to serve twice as much requests, with an increased
bandwidth.

Relying on a more scalable protocol was useful to improve the performance but it was not
enough to get rid of DoS issues. A service accessed from thousands of nodes at the same time
can quickly become overloaded, especially if communication sockets are not quickly closed (e.g.,
when broadcasting large files). Thus we had to replicate the infrastructure services. To enable
PXE profiles and kernel files distribution from multiple HTTP servers, we tuned the DNS server
to split the requests over several HTTP servers. Because the testbed is distributed over several
Grid’5000 sites, the iPXE HTTP implementation also suffers from the high latency between the
grid sites. Thus we had to replicate the HTTP servers on every site, and thanks to another DNS
tuning, the nodes of a given site were only served by local HTTP servers.

We also had to deal with ARP tables overflow. Since some services (e.g., DHCP) were
accessed by every nodes, the ARP tables of those servers were quickly saturated. This issue has
been solved by increasing the ARP tables on the servers thanks to on-the-fly Linux kernel tuning
facilities.

6 Related Works
This section present some tools that can be compared to Kadeploy3. We only present open-source
solutions since we are not able to freely study the commercial ones.

xCAT [14] aims at doing operating system provisioning on physical or virtual machines. It
supports scripted install, stateless deployment and cloning deployment. Concerning physical
machines, it targets RPM based Linux distributions (RHEL, CentOS, Fedora), IBM AIX and
some Windows versions. Even if it can be used more or less easily on any hardware, xCAT
is strongly designed to run on IBM one. In this case, it offers a set of features to quickly set
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up and control the management node services (DNS, DHCP, TFTP, HTTP). According to the
developers, a single xCAT instance can scale up to 128 nodes clusters. Beyond this, several xCAT
instances can be deployed hierarchically to scale far away. To perform broadcast operations,
xCAT relies on hierarchical HTTP transfers or iSCSI. Comparing to Kadeploy3, it offers extra
services like scripted install and stateless deployment. However it is less versatile concerning the
operating systems and the supported hardware. It also does not allow to perform large scale
deployments in a single shot since it does not leverage on scalable tools for parallel commands
and file broadcast like Kadeploy3 does. Finally, xCAT only targets administration tasks and
does not allow user deployments.

Clonezilla [1] is a cloning tool that supports almost any operating system since it is compliant
with a lot of file systems. For unsupported file system, Clonezilla can do sector-to-sector copy
using dd, like Kadeploy3. Clonezilla is proposed in two versions: Clonezilla Live and Clonezilla
Server Edition. Since Clonezilla Live is dedicated to single machine backup, we focus on Clonezilla
Server Edition. It relies on DRBL [4] that provides a diskless environment for cluster nodes.
Clonezilla has no dependency to any specific hardware and can use either unicast or multicast
transfer for environment broadcast. However, it is not designed for large scale clusters but instead
infrastructures like classrooms.

SystemImager [12] aims at replicating a golden node on a cluster. It can either perform bare
metal installation of cluster nodes or propagate updates from the golden node to the cluster
nodes using rsync. In the case of bare metal installation, the environment broadcast can use
rsync, multicast, and BitTorrent for a better scalability. Only file broadcast takes scalability
concerns into account, thus only a few hundred of nodes can be deployed in one shot. Compared
to Kadeploy3, SystemImager is less versatile since it targets only the administration purpose and
only supports Linux based operating systems. SystemImager is widely used and is a keystone
for higher level tools like Oscar [9].

Other tools like Cobbler [3] or FAI [5] aims at installing a Linux operating system on a
cluster following the regular system installation process. These tools are not suitable for large
scale clusters and only focus on Linux.

7 Conclusion and Future Works

This paper presents Kadeploy3, an efficient, reliable and scalable tool that aims at performing
operating system provisioning on HPC clusters.

Kadeploy3 has been designed in the context of the Grid’5000 experimental testbed where the
goal was to provide grid users with a way to fully reconfigure the grid nodes as they see fit during
their experiments.

Kadeploy3 is also well suited for classical administration tasks. Indeed, the reliability and
the scalability properties of Kadeploy3 allow to safely perform operating system provisioning on
large scale clusters without inducing long downtimes like it is the case with some unreliable and
poorly scalable tools of the state of the art.

Because it is used since 2009 on the Grid’5000 context by several hundreds of users and
because it is also used for administrative tasks on production clusters, Kadeploy3 has proven to
be useable, efficient, and reliable for day-to-day use.

We have also demonstrated the scalability of Kadeploy3 by presenting experiments where
we have performed successfully a deployment on a petascale cluster comprising 2000 nodes, and
where we also have performed deployments into a virtualized testbed comprising about 4000
nodes.

Future works will be dedicated to the improvement of the file broadcast techniques, in partic-
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ular when the network topology is complex, and to the improvement of the hierarchical parallel
command tool in the situation where the tree must not be randomly created, for instance when
latency between the nodes is heterogeneous.
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